Day 12: Introduction to Queues
Table of Contents
Introduction to Queues #
Welcome to Day 12 of our 60 Days of Coding Algorithm Challenge! Today, we’ll explore queues, another fundamental data structure that follows the First-In-First-Out (FIFO) principle.
What is a Queue? #
A queue is a linear data structure that follows a particular order in which operations are performed. The order is First In First Out (FIFO). A good example of a queue is any queue of consumers for a resource where the consumer that came first is served first.
Basic Operations of a Queue #
- Enqueue: Adds an element to the rear of the queue
- Dequeue: Removes the element from the front of the queue
- Front: Get the front element from the queue without removing it
- Rear: Get the last element from the queue without removing it
- isEmpty: Check if the queue is empty
Implementing a Queue in Python #
We can implement a queue using a Python list or create a custom class. Let’s implement both:
Using a Python List #
class Queue:
def __init__(self):
self.items = []
def is_empty(self):
return len(self.items) == 0
def enqueue(self, item):
self.items.append(item)
def dequeue(self):
if not self.is_empty():
return self.items.pop(0)
else:
raise IndexError("Queue is empty")
def front(self):
if not self.is_empty():
return self.items[0]
else:
raise IndexError("Queue is empty")
def rear(self):
if not self.is_empty():
return self.items[-1]
else:
raise IndexError("Queue is empty")
def size(self):
return len(self.items)
Using a Custom Node Class #
class Node:
def __init__(self, data):
self.data = data
self.next = None
class Queue:
def __init__(self):
self.front = None
self.rear = None
def is_empty(self):
return self.front is None
def enqueue(self, item):
new_node = Node(item)
if self.rear is None:
self.front = self.rear = new_node
return
self.rear.next = new_node
self.rear = new_node
def dequeue(self):
if self.is_empty():
raise IndexError("Queue is empty")
dequeued = self.front.data
self.front = self.front.next
if self.front is None:
self.rear = None
return dequeued
def get_front(self):
if self.is_empty():
raise IndexError("Queue is empty")
return self.front.data
def get_rear(self):
if self.is_empty():
raise IndexError("Queue is empty")
return self.rear.data
def size(self):
count = 0
current = self.front
while current:
count += 1
current = current.next
return count
Time Complexity #
- Enqueue operation: O(1)
- Dequeue operation: O(1) for linked list implementation, O(n) for array implementation
- Front operation: O(1)
- Rear operation: O(1)
Applications of Queues #
- CPU Scheduling: Manages processes waiting to be executed
- Breadth-First Search: Used in graph algorithms
- Handling of requests on a single shared resource: Printer, CPU task scheduling
- Buffering: In streaming media, routers, etc.
- Asynchronous data transfer: IO Buffers, pipes, file IO, etc.
Example: Level Order Traversal of a Binary Tree #
Let’s implement a function to perform level order traversal of a binary tree using a queue:
from collections import deque
class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
def level_order_traversal(root):
if not root:
return []
result = []
queue = deque([root])
while queue:
level_size = len(queue)
current_level = []
for _ in range(level_size):
node = queue.popleft()
current_level.append(node.value)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(current_level)
return result
# Test the function
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
print(level_order_traversal(root)) # Output: [[1], [2, 3], [4, 5]]
Exercise #
- Implement a circular queue using an array.
- Create a function to reverse the first K elements of a queue.
- Implement a stack using two queues.
Summary #
Today, we explored the queue data structure, its implementation, and a practical application in tree traversal. Queues are essential in many algorithms and real-world applications due to their FIFO nature. Understanding queues will help you solve various problems efficiently, especially in scenarios involving ordered processing or breadth-first algorithms.
Tomorrow, we’ll begin our exploration of trees, starting with an introduction to tree data structures and their properties. Stay tuned!